Lexmark Toner Goes Under The Microscope

Posted by Rob Errera on 7th Mar 2019

Lexmark Toner Goes Under The Microscope

Ever wonder what your toner looks like under a microscope? Of course you do! Everybody does. There’s no shame in it.

Under The Lens

A study in the Journal of Microscopy and Ultrastructure looked at Lexmark laser printer toner with a scanning electron microscope and the results were amazing. The goal of the study was printer forensics — could a scanning electron microscope not only differentiate types of toner but identify which machine they were printed on?

The answer is a resounding yes. Scanning electron microscopes allow the observation of the surface of objects without their prior preparation. The study analyzed a total of 21 printouts from the Lexmark laser printers and laser multi-functional devices. Sixteen printouts were obtained using original toner cartridges, while five printouts were obtained using non-OEM printer cartridges. All printouts were printed on A4 paper format. Only black toner was tested.

The Imaging Process

The imaging process was carried out in the following sequence, for all samples. First, a single letter was imaged in a low magnification. In the next step, the irregularities on the surface of toner were tested. In higher magnification, two types of specific areas are visible: solid surface and granular surface. Finally, the surface of a single grain in a very high magnification (more than ×100,000) was examined.

The black toner on printouts differ in all cases. Such surface creates a characteristic and unique pattern for every single printout.The bottom line is, each printer and toner combo has a unique topography. Every page you print is unique — and can therefore be traced back to — you and your printer!

Solids and Grains

Two types of specific areas are visible: solid surface and granular surface. The granular surface tends to form small or large clusters of a varying density. The surface of the toner was observed to be differentiated in terms of distribution in these two areas. In some printouts, the granular layer prevails, and in others, the solid one. In other cases, the ratio of both surfaces is approximately equal, depending on the device used. In the case of printouts made from the same type of device, the structure of the toner surface is the same.

It appears that the toners contained not only the different shapes of grains but also different structures of the surface. The grains adopt different shapes.Some look like perfect spheres, others are irregular with sharp or rounded edges or look like a “potato” or “a grain of rice,” while others are more or less elongated. A characteristic feature of the toner is the distribution of grains and the appearance of clusters, which are frequently in the middle of the line of print or on the inside line of the print and the manner in which the grains are connected: clusters, aggregates, and chains.

You'll find the best prices on Lexmark toner here, and the best deals on genuine OEM toner at Toner Buzz, your number one stop for office supplies online!

The many shapes of microscopic toner remind of a deep dive into the human body, or a peek into deep space.

SEM images of the solid surface of toner on the printout obtained from color laser multifunction devices: (a) C540/C543/C544, (b) X543/X544, (c) X920de, (d) X940e/X945e, (e) X950

The images above were produced with non-OEM replacement toner. The microscope sees the difference...can you?

SEM images of the granular surface of toner on the printout obtained from different Lexmark printers: (a) E260/E360, (b) MS 610dn, (c) T650n/T652/T654n, (d) C734/C736, (e) X264/X363/X364, (f) MX410, (g) X654de/X656de, (h) X463/X464/X466 (i) X658de, (j) MX710/MX810, (k) X860de/X862de/X864de, (l) C540/C543/C544, (m) X543/X544, (n) X920de, (o) X940e/X945e, (p) X950